Electronic Properties and ¹³C NMR Structural Study of Y₃N@C₈₈

Wujun Fu, Jianyuan Zhang, Hunter Champion, Tim Fuhrer, Hugo Azuremendi, Tianming Zuo, Jianfei Zhang, Kim Harich, and Harry C. Dorn*

Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States

S Supporting Information

ABSTRACT: In this paper, we report the synthesis, purification, ¹³C NMR, and other characterization studies of Y₃N@C₈₈. The ¹³C NMR, UV-vis, and chromatographic data suggest an $Y_3N\omega C_{88}$ having an IPR-allowed cage with $D_2(35)$ -C₈₈ symmetry. In earlier density functional theory (DFT) computational and X-ray crystallographic studies, it was reported that lanthanide $(A_3N)^{6+}$ clusters are stabilized in $D_2(35)$ -C₈₈ symmetry cages and have reduced HOMO-LUMO gaps relative to other trimetallic nitride endohedral metallofullerene cage systems, for example, $A_3N@C_{80}$. In this paper, we report that the nonlanthanide $(Y_3N)^{6+}$ cluster in the $D_2(35)$ -C₈₈ cage exhibits a HOMO-LUMO gap consistent with other lanthanide $A_3N\omega C_{88}$ molecules based on electrochemical measurements and DFT computational studies. These results suggest that the reduced HOMO-LUMO gap of $A_3N\omega C_{88}$ systems is a property dominated by the $D_2(35)$ -C₈₈ carbon cage and not f-orbital lanthanide electronic metal cluster $(A_3N)^{6+}$ orbital participation.

INTRODUCTION

The separation and characterization of higher fullerenes beyond C_{80} is very difficult not only because of their extremely low yield but also because of the possible presence of multiple isomers, instability, and lower solubility.¹ For example, Yang and Dunsch reported the separation of di- and tri-dysprosium endohedral metallofullerenes in the fullerene cages from C_{94} to C_{100} . Because of the limited available amount of sample, they did not obtain any structural information for those large cages.² Among the large fullerene cages, the C_{88} cage has been widely studied. As early as 1995, C_{88} empty cage fullerenes were separated from soot generated in a Kratschmer-Huffman electric-arc generator and subsequently characterized using 13 C NMR by Achiba et al.³ In a later report, Miyake et al.⁴ described a more detailed 13 C NMR study for the C_{88} empty cage fullerene. However, the structural assignments were ambiguous because at least three C_{88} isomers exist.⁴ Because of the difficulty in the experimental part, extensive theoretical studies were performed by several groups to aid the structural determination.^{5,6} It was predicted that the $C_2(7)$, C_5 -(17), and $C_2(33)$ isomers are the mostly likely to be experimentally isolated among the 35 IPR-obeying isomers of C_{88} .^{5,6} Derivatization of empty fullerene cages has proven to be an effective tool for cage stabilization and meanwhile provides a path for further structural characterization. For example, Troyanov and Tamm['] synthesized and characterized trifluoromethyl derivatives of C_{88} , C_{88} (CF₃)₁₈. On the basis of their X-ray investigation, they determined that $C_{88}(CF_3)_{18}$ processes a $C_2(33)$ - C_{88} cage, which is one of the three most stable isomers predicted on a theoretical basis.

Encapsulation of atoms or clusters into fullerene cages is another method used to stabilize empty fullerene cages by electron-transfer processes between the encapsulated and carbon cages.

PERINSITY
 PERIES and ¹³*C* **NMR Structural Study of Y₃NeC₆₈

Xang Hanter Champion, Tim Fahrer, Hugo Azuremendi, Tamming Zuo,

Archives 326, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010, 2010,** Trimetallic nitride template (TNT) endohedral metallofullerenes (EMFs) are particularly important not only because of their relatively high yields but also because of their intriguing potential applications in biomedical, optoelectronic, and photovoltaic fields.^{8,9} Insertion of a TNT cluster into a C_{88} cage $(A_3N@C_{88}$, where A = Gd, Tm, Dy, Tb, Nd, Pr, Ce, La) has been reported by several laboratories. $^{10-13}$ Echegoyen and co-workers suggested that the C_{88} cage is preferentially templated by a TNT cluster for metal ions with ionic radii larger than Gd, such as Nd, Pr, or Ce.^{10,11} However, most of the TNT EMFs with the C_{88} cage have been characterized by mass spectroscopy without definitive structural characterization. Notable exceptions are the single-crystal X-ray studies reported for Tb₃N@C₈₈, which have been found to have an IPR-obeying $D_2(35)$ structure.¹² This is in contrast with the theoretical predictions for the empty C_{88} cage. Thus, it is interesting to examine whether clusters with different metals $(A_3N)^{6+}$ encapsulated within a C_{88} cage have the same cage structure as IPR-obeying $Tb_3N@D_2(35)$ -C₈₈.

In this paper, we report the synthesis, separation, and structural characterization of diamagnetic Y₃N@C₈₈. This diamagnetic molecule allows high-resolution 13 C NMR structural studies, which are generally not feasible for the paramagnetic lanthanide C_{88} cage TNT EMFs reported above. Density

Published: April 20, 2011 Received: August 31, 2010

Figure 1. (a) HPLC chromatogram of the purified $Y_3N@C_{88}$ and Tb₃N@C₈₈ (10 \times 250 mm 5PYE column; λ = 390 nm; flow rate 2.0 mL/min; toluene as the eluent; 25 °C). (b) UV-vis spectra of $Y_3N\omega C_{88}$ and $Tb_3N\omega C_{88}$ in toluene and positive-ion LD-TOF MS for purified $Y_3N\omega C_{88}$.

functional theory (DFT) calculations were utilized to augment the structural determination. The electronic properties of $Y_3N\omega C_{88}$ were also studied by both electrochemical and DFT computational approaches to compare a nonlanthanide TNT EMF with the corresponding lanthanide TNT EMFs reported to date.

EXPERIMENTAL SECTION

A sample of $Y_3N\omega C_{88}$ was synthesized in an electric-arc-discharge reactor by vaporizing graphite rods containing a mixture of Y_2O_3 and graphite powder and using Cu as the catalyst with a weight ratio of 1.1:1.0:2.1 in a dynamic flow of N_2 and He (flow rate ratio of N_2 :He = $3:100$.¹⁴ The toluene extract from the raw soot was applied to a cyclopentadiene-functionalized Merrifield peptide resin. The eluent was further separated by two-stage high-performance liquid chromatography (HPLC). The first stage was carried out on a 5PBB column, and the sixth fraction contains $Y_3N\omega C_{88}$, which was further purified by a 5PYE column.

The ¹³C NMR measurements (150 MHz) were performed on a Bruker Advance spectrometer (600 MHz, ¹H). The sample was dissolved in CS_2 with $Cr(\text{acac})_3$ as the relaxation agent and acetone- d_6 as the internal lock at 25 °C. Cyclic voltammetry (CV) was conducted using a CH Instruments 600A potentiostat (Austin, TX) with a singlecompartment, three electrode and electrochemical cell. A 2.0 mm glassy carbon working electrode, a platinum wire auxiliary electrode, and a silver wire pseudoreference electrode were used; ferrocene was used as an internal standard.

DFT computations were performed using the Gaussian 03 program package. All of the molecules were geometrically optimized at the UB3LYP level with a DZVP basis set for yttrium atoms and a 6-31G* basis set for carbon and nitrogen atoms.¹⁴ DFT-optimized energy values

Figure 2. (a) ¹³C NMR spectrum of $Y_3N@D_2-C_{88}$ in CS₂ with 10 mg of $Cr(\text{acac})_3$ relaxant (acetone- d_6 lock) after 64 000 scans at 25 °C, showing the 22 \times 4 pattern (number of NMR lines \times relative intensity). The symbol • indicate the signals with double intensity. (b) Computational ¹³C NMR spectrum for $Y_3N\omega D_2(35)$ -C₈₈. The experimental and calculated 13 C shifts are provided in the Supporting Information. (c) Correlation between experimental and computational 13 C NMR results.

were obtained starting from the X-ray crystallographic structures of the corresponding $Tb_3N@D_2(35)$ -C₈₈.¹²

RESULTS AND DISCUSSION

As illustrated in Figure 1, the HPLC, positive-ion laser-desorption time-of-flight mass spectrometry (LD-TOF MS), and UV-vis spectra for $Y_3N\omega C_{88}$ are compared with data that were previously reported for $\text{Tb}_3\text{N@C}_{88}$.¹² The close correspondence of the data in Figure 1 strongly suggests that $Y_3N\omega C_{88}$ has the same $D_2(35)$ cage structure as $Tb_3N\omega D_2(35)$ -C₈₈.¹² Because the Y₃N ω C₈₈ molecule is diamagnetic, we were able to obtain high-resolution ¹³C NMR data for $Y_3N\omega C_{88}$ to further confirm the cage structure.

The ¹³C NMR spectrum (Figure 2a) for $Y_3N@C_{88}$ exhibits a total of 22 lines (lines at 139.10 and 139.69 ppm, double intensity) with a shift range from 131.0 to 150.0 ppm. An IPR-allowed isomer is suggested because of the absence of a^{-13} C NMR signal above 155 ppm, which is characteristic of non-IPR pentalene motifs.¹⁴ There are 35 IPR-allowed C_{88} isomers and two isomers, (1) and (35), that have D_2 symmetry (22 \times 4 lines), which is consistent with the observed spectrum.15 Among the 35 IPR-obeying isomers for the C_{88} cage, no other IPR-allowed structure exhibits fewer than 22 lines except for isomer (34) with T symmetry, which exhibits eight 13 C NMR resonances (1 \times 4 and 7 \times 12). All other C₈₈ IPR isomers have lower symmetry and exhibit more than 22 spectral lines. In addition, there are seven pyrene 6,6,6-type carbons that range from 132.0 to 137.9 ppm, which is in reasonably good agreement with seven DFT-predicted values (Figure 2b) ranging from 131.9 to 139.2 ppm. 14 ^T The correlation between the experimental 13 C and the DFT-predicted chemical shielding values are shown in Figure 2c. $Tb_3N\omega D_2(35)$ -C₈₈ exhibits a carbon cage with D_2 symmetry as determined by previous single-crystal X-ray diffraction studies.

Figure 3. DFT computational HOMO-LUMO levels for the neutral IPR $D_2(35)$ -C₈₈ and Y₃N@D₂(35)-C₈₈ cages.

Thus, our current results are consistent with a $Y_3N\omega D_2(35)$ -C₈₈ structure in a fashion analogous to that of $Tb_3N(\partial D_2(35)-C_{88})$. 12

As previously indicated, there are three isomers of empty C_{88} cages, $C_2(7)$, $C_s(17)$, and $C_2(33)$, that are predicted to be thermodynamically and kinetically stable.^{5,6} However, C₈₈ with $D_2(35)$ symmetry is not included in this group. Computational (DFT) calculations summarized in Figure 3 suggest that the neutral IPR $D_2(35)$ -C₈₈ has a small HOMO-LUMO gap (1.27) eV), indicating the lower stability of the neutral $D_2(35)$ -C₈₈ cage. However, upon accepting six electrons, the HOMO-LUMO gap becomes significantly larger (1.77 eV), consistent for the higher stability of the Y₃N@D₂(35)-C₈₈ molecule. To our knowledge, neither the Y₃N cluster nor the $D_2(35)$ -C₈₈ cage has been isolated, but when associated together, they form a stable $Y_3N\omega D_2(35)$ -C₈₈ structure by electron transfer between the cluster and cage.

As illustrated in Figure 4, the CV electrochemistries of $Y_3N\omega C_{88}$ and $Gd_3N\omega C_{88}$ are nearly equivalent. The $Gd_3N\omega C_{88}$ sample for this CV electrochemistry comparison was isolated and purified (see the Supporting Information) in the same fashion as that described for $Y_3N\omega C_{88}$ vide supra and is consistent with previously reported data by Echegoyen and co-workers.¹⁶ The electrochemistry of $Y_3N\omega C_{88}$ and $Gd_3N\omega C_{88}$ can be described as having two distinct oxidative processes accompanied by first and second reduction peak potentials of -1.43 and -1.70 V, respectively. The redox potentials and resulting electrochemical gap (ΔE_{gap}) for $Y_3N\omega C_{88}$ are in good agreement with reported literature values for other $M_3N\omega C_{88}$ systems (Table 1). This is consistent with a single (nondegenerate) LUMO level for $Y_3N\omega C_{88}$ obtained from the DFT calculations described above. The resulting electrochemical

Figure 4. Cyclic voltammogram of $Y_3N@C_{88}$ and $Gd_3N@C_{88}$; 100 mV/s; 0.1 M TBABF₄ in o -DCB.

Table 1. Redox Potential of the $A_3@C_{2n}$ Endohedral Metallofullerenes

band gap ${}^{\text{ox}}E_1$ - ${}^{\text{red}}E_1$ for Y₃N@C₈₈ is 1.46 V, reasonably consistent with the DFT predictions above. Although ${}^{\text{ox}}E_1$ $- {}^{\text{red}}E_1$ for $Y_3N@C_{88}$ is smaller than that for the more stable $Y_3N\omega C_{80}$ case,¹⁶ this band gap is similar to other $M_3N\omega C_{88}$ family members, such as $Gd_3N@C_{88} (1.49 \text{ V})$,¹⁷ Nd₃N@C₈₈ (1.43 V),¹¹ Pr₃N@C₈₈ (1.43 V), \overline{O} Ce₃N@C₈₈(1.38 V), \overline{O} and La₃N@C₈₈(1.57 V). These results suggests that the ${}^{\text{ox}}E_1$ – ${}^{\text{red}}E_1$ band gap (and corresponding HOMO-LUMO gap) of $A_3N@C_{88}$ trimetallic nitride endohedral metallofullerenes is a property dominated by the properties of the $D_2(35)$ -C₈₈ carbon cage and not the nature of the yttrium or lanthanide electronic metal cluster $(A_3N)^{6+}$.

CONCLUSION

In summary, we have synthesized, purified, and characterized diamagnetic Y₃N@C₈₈ for the first time. The ¹³C NMR study indicates that Y₃N@C₈₈ exhibits an IPR-obeying $D_2(35)$ -C₈₈ cage. The electrochemical data suggested that $Y_3N@C_{88}$ has a smaller HOMO-LUMO gap than $Y_3N@C_{80}$, which is consistent with the computational DFT study. Also, our results show that encapsulation of an Y_3N cluster does not significantly alter the electrochemical properties of these trimetallic nitride endohedral metallofullerenes, and this result is consistent with other lanthanide M₃N clusters in $D_2(35)$ -C₈₈ cages. This suggests that the unique $D_2(35)$ -C₈₈ cage properties strongly influence the electrochemical and electronic properties of these trimetallic nitride endohedral metallofullerenes.

ASSOCIATED CONTENT

S Supporting Information. Extra information for Figure 2, an HPLC chromatogram, a table of components and yields, and LD-TOF MS spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

'NOTE ADDED IN PROOF

Recently, a study of Lu3N@C₈₈ was reported.¹⁸

AUTHOR INFORMATION

Corresponding Author

*E-mail: hdorn@vt.edu. Tel: 540-231-5953. Fax: 540-231-3255.

ACKNOWLEDGMENT

We gratefully acknowledge support by the National Science Foundation [Grants CHE-0443850 and DMR-0507083 (to H.C. D.)] and the National Institutes of Health [Grant 1R01CA119371-01 (to H.C.D.)]. We also acknowledge Dr. Jiechao Ge for his help with some of the preparation for this work.

REFERENCES

(1) Popov, A. A.; Dunsch, L. J. Am. Chem. Soc. 2007, 129, 11835–11849.

(2) Yang, S.; Dunsch, L. Angew. Chem., Int. Ed. 2006, 45, 1299–1302. (3) Achiba, Y.; Kikuchi, K.; Aihara, Y.; Wakabayashi,T.; Miyake, Y.; Kainosho, M. In Science and Technology of Fullerene Materials; Bernier P., Bethune, D. S., Chiang, L. Y., Ebbesen, T. W., Metzger, R. M., Mintmire, J. W., Eds.; MRS Symposia Proceedings No. 359; Material Reasearch Society: Pittsburgh, PA, 1995; pp 3-9.

(4) Miyake, Y.; Minami, T.; Kikuchi, K.; Kainosho, M.; Achiba, Y. Mol. Cryst. Liq. Cryst. 2000, 340, 553–558.

(5) Watanabe, M.; Ishimaru, D.; Mizorogi, N.; Kiuchi, M.; Aihara, J. I. THEOCHEM 2005, 726, 11–16.

(6) Sun, G. Y. Chem. Phys. Lett. 2003, 367, 26–33.

Troyanova, S.; Tamm, N. B. Chem. Commun. 2009, 6035-6037.

(8) Fatouros, P. P.; Corwin, F. D.; Chen, Z. J.; Broaddus, W. C.; Tatum, J. L.; Kettenmann, B.; Ge, Z. X.; Gibson, H. W.; Russ, J. L.; Leonard, A. P.; Duchamp, J. C.; Dorn, H. C. Radiology 2006, 240, 756–764.

(9) Ross, R. B.; Cardona, C. M.; Guldi, D. M.; Sankaranarayanan, S. G.; Reese, M. O.; Kopidakis, N.; Peet, J.; Walker, B.; Bazan, G. C.; Van Keuren, E.; Holloway, B. C.; Drees, M. Nat. Mater. 2009, 8, 208–212.

(10) Chaur, M. N.; Melin, F.; Elliott, B.; Kumbhar, A.; Athans, A. J.; Echegoyen, L. Chem.—Eur. J. 2008, 14, 4594–4599.

(11) Melin, F.; Chaur, M. N.; Engmann, S.; Elliott, B.; Kumbhar, A.; Athans, A. J.; Echegoyen, L. Angew. Chem., Int. Ed. 2007, 46, 9032–9035.

(12) Zuo, T. M.; Beavers, C. M.; Duchamp, J. C.; Campbell, A.; Dorn, H. C.; Olmstead, M. M.; Balch, A. L. J. Am. Chem. Soc. 2007, 129, 2035–2043.

(13) Yang, S. F.; Dunsch, L. J. Phys. Chem. B 2005, 109, 12320–12328.

(14) Fu, W. J.; Xu, L. S.; Azurmendi, H.; Ge, J. C.; Fuhrer, T.; Zuo, T. M.; Reid, J.; Shu, C. Y.; Harich, K.; Dorn, H. C. J. Am. Chem. Soc. 2009, 131, 11762–11769.

(15) Fowler, P. W. Manolopoulos, D. E. An Atlas of Fullerenes; Clarendon Press: Oxford, U.K., 1995.

(16) Cardona, C. M.; Elliott, B.; Echegoyen, L. J. Am. Chem. Soc. 2006, 128, 6480–6485.

(17) Charu, M. N.; Melin, F.; Elliott, B.; Athans, A. J.; Walker, K.; Holloway, B. C.; Echegoyen, L. J. Am. Chem. Soc. 2007, 129, 14826–14829.

(18) Xu, W.; Wang, T. S.; Wu, J.-Y.; Ma, Y.-H.; Zheng, J.-P.; Li, H.; Wang, B.; Jiang, L.; Shu, C.-Y.; Wang, C. R. J. Phys. Chem. C 2011, 115 (2), 402–405.